Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nat Microbiol ; 9(5): 1340-1355, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605174

RESUMO

Although the significance of chemical modifications on RNA is acknowledged, the evolutionary benefits and specific roles in human immunodeficiency virus (HIV-1) replication remain elusive. Most studies have provided only population-averaged values of modifications for fragmented RNAs at low resolution and have relied on indirect analyses of phenotypic effects by perturbing host effectors. Here we analysed chemical modifications on HIV-1 RNAs at the full-length, single RNA level and nucleotide resolution using direct RNA sequencing methods. Our data reveal an unexpectedly simple HIV-1 modification landscape, highlighting three predominant N6-methyladenosine (m6A) modifications near the 3' end. More densely installed in spliced viral messenger RNAs than in genomic RNAs, these m6As play a crucial role in maintaining normal levels of HIV-1 RNA splicing and translation. HIV-1 generates diverse RNA subspecies with distinct m6A ensembles, and maintaining multiple of these m6As on its RNAs provides additional stability and resilience to HIV-1 replication, suggesting an unexplored viral RNA-level evolutionary strategy.


Assuntos
Adenosina , HIV-1 , RNA Viral , Replicação Viral , HIV-1/genética , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Replicação Viral/genética , Splicing de RNA , Análise de Sequência de RNA/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Infecções por HIV/virologia , Transcriptoma
2.
Sci Rep ; 14(1): 9440, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658799

RESUMO

Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.


Assuntos
Melaninas , Pteridinas , Proteínas Quinases S6 Ribossômicas 90-kDa , Transdução de Sinais , alfa-MSH , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Melaninas/biossíntese , Melaninas/metabolismo , Animais , alfa-MSH/metabolismo , alfa-MSH/farmacologia , Camundongos , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Raios Ultravioleta , Morfolinas/farmacologia , Cromonas/farmacologia , Nitrilas/farmacologia , Butadienos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Melanoma Experimental/metabolismo , Melanogênese
3.
Cell Death Dis ; 15(4): 274, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632244

RESUMO

Accumulating evidence demonstrates that the activity regulation of ELK3, a member of the E26 transformation-specific oncogene family, is critical to regulating cell proliferation, migration, and survival in human cancers. However, the molecular mechanisms of how ELK3 induces chemoresistance in prostate cancer (PCa) have not been elucidated. In this study, we found that SPOP and ELK3 are an interacting partner. The interaction between SPOP and ELK3 resulted in increased ELK3 ubiquitination and destruction, assisted by checkpoint kinase-mediated ELK3 phosphorylation. Notably, the modulation of SPOP-mediated ELK3 protein stability affected the c-Fos-induced cell proliferation and invasion of PCa cells. The clinical involvement of the SPOP-ELK3 axis in PCa development was confirmed by an immunohistochemical assay on 123 PCa tissues, with an inverse correlation between increased ELK3 and decreased SPOP being present in ~80% of the specimens. This observation was supported by immunohistochemistry analysis using a SPOP-mutant PCa specimen. Finally, docetaxel treatment induced cell death by activating checkpoint kinase- and SPOP-mediated ELK3 degradation, while SPOP-depleted or SPOP-mutated PCa cells showed cell death resistance. Notably, this observation was correlated with the protein levels of ELK3. Taken together, our study reveals the precise mechanism of SPOP-mediated degradation of ELK3 and provides evidence that SPOP mutations contribute to docetaxel resistance in PCa.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-ets , Humanos , Masculino , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Mutação , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitinação , Proteínas Proto-Oncogênicas c-ets/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
4.
Mar Drugs ; 22(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535468

RESUMO

The extracts of Corydalis heterocarpa, a salt-tolerant plant, exhibit diverse physiological properties, including anti-inflammatory, anticancer, and antiadipogenic effects. However, the anti-aging effects of C. heterocarpa extract (CHE) on human skin cells have not yet been investigated. In the present study, we determined that CHE inhibited senescence-associated ß-galactosidase (SA-ß-gal)-stained senescent human dermal fibroblasts (HDFs). Furthermore, CHE markedly suppressed the expression of major regulatory proteins involved in senescence, including p53, p21, and caveolin-1. Interestingly, CHE promoted autophagic flux, as confirmed by the formation of microtubule-associated protein 1 light chain 3B (LC3B) puncta and lysosomal activity. Notably, using RNA sequencing (RNA-seq), we showed that CHE selectively regulated the gene expression of leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1), an important regulator of autophagy. The adenosine-monophosphate activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway, which is essential for autophagy regulation, was also modulated by CHE. LRSAM1 depletion not only inhibited LC3B expression but also decreased the autophagy flux induced by CHE. Moreover, the knockdown of LRSAM1 suppressed the reversal of CHE-induced senescence in old HDFs. Collectively, our study has revealed the rejuvenating effects and molecular mechanisms of CHE, suggesting that CHE may be a promising anti-aging agent.


Assuntos
Corydalis , Humanos , Autofagia , Pele , Envelhecimento , Extratos Vegetais , Ubiquitina-Proteína Ligases
5.
Exp Mol Med ; 56(3): 686-699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480902

RESUMO

Cancer cells often exhibit resistance to apoptotic cell death, but they may be vulnerable to other types of cell death. Elucidating additional mechanisms that govern cancer cell death is crucial for developing new therapies. Our research identified cyclic AMP-responsive element-binding protein 3 (CREB3) as a crucial regulator and initiator of a unique cell death mechanism known as karyoptosis. This process is characterized by nuclear shrinkage, deformation, and the loss of nuclear components following nuclear membrane rupture. We found that the N-terminal domain (aa 1-230) of full-length CREB3 (CREB3-FL), which is anchored to the nuclear inner membrane (INM), interacts with lamins and chromatin DNA. This interaction maintains a balance between the outward force exerted by tightly packed DNA and the inward constraining force, thereby preserving INM integrity. Under endoplasmic reticulum (ER) stress, aberrant cleavage of CREB3-FL at the INM leads to abnormal accumulation of the cleaved form of CREB3 (CREB3-CF). This accumulation disrupts the attachment of CREB3-FL to the INM, resulting in sudden rupture of the nuclear membrane and the onset of karyoptosis. Proteomic studies revealed that CREB3-CF overexpression induces a DNA damage response akin to that caused by UVB irradiation, which is associated with cellular senescence in cancer cells. These findings demonstrated that the dysregulation of CREB3-FL cleavage is a key factor in karyoptotic cell death. Consequently, these findings suggest new therapeutic strategies in cancer treatment that exploit the process of karyoptosis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Membrana Nuclear , Proteômica , Apoptose , DNA , Membrana Nuclear/metabolismo , Humanos , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
6.
Methods Protoc ; 7(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38251200

RESUMO

The biological significance of chemical modifications to the ribonucleic acid (RNA) of human immunodeficiency virus type-1 (HIV-1) has been recognized. However, our understanding of the site-specific and context-dependent roles of these chemical modifications remains limited, primarily due to the absence of nucleotide-resolution mapping of modification sites. In this study, we present a method for achieving nucleotide-resolution mapping of chemical modification sites on HIV-1 RNA using liquid chromatography and tandem mass spectrometry (LC-MS/MS). LC-MS/MS, a powerful tool capable of directly analyzing native RNAs, has proven effective for mapping RNA modifications in small RNA molecules, including ribosomal RNA and transfer RNA. However, longer RNAs have posed challenges, such as the 9 Kb HIV-1 virion RNA, due to the complexity of and ambiguity in mass differences among RNase T1-cleaved RNA fragments in LC-MS/MS data. Here, we introduce a new target RNA enrichment method to isolate small local RNA fragments of HIV-1 RNA that potentially harbor site-specific N6-methyladenosine (m6A) modifications. In our initial trial, we used target-specific DNA probes only and encountered insufficient RNA fragmentation due to inefficient S1 digestion near the target site. Recognizing that inefficient S1 digestion by HIV-1 RNA is likely due to the formation of secondary structures in proximity to the target site, we designed multiple DNA probes annealing to various sites of HIV-1 RNA to better control the structures of RNA substrates for S1 digestion. The use of these non-target DNA probes significantly improved the isolation of more homogeneous target RNA fragments of approximately 50 bases in length. Oligonucleotide LC-MS/MS analysis of these isolated target RNA fragments successfully separated and detected both m6A-methylated and non-methylated oligomers at the two m6A-predicted sites. The principle of this new target enrichment strategy holds promise and should be broadly applicable to the analysis of any lengthy RNA that was previously deemed infeasible for investigation using oligonucleotide LC-MS/MS.

7.
Pediatr Res ; 95(1): 325-333, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37198405

RESUMO

BACKGROUND: We identified patient characteristics associated with an increased risk of developing MIS-C. METHODS: We conducted a longitudinal cohort study of 1,195,327 patients aged 0-19 years between 2006 and 2021, including the first two waves of the pandemic (February 25-August 22, 2020 and August 23, 2020-March 31, 2021). Exposures included prepandemic morbidity, birth outcomes, and family history of maternal disorders. Outcomes included MIS-C, Kawasaki disease, and other Covid-19 complications during the pandemic. We calculated risk ratios (RRs) and 95% confidence intervals (CIs) for the association between patient exposures and these outcomes using log-binomial regression models adjusted for potential confounders. RESULTS: Among 1,195,327 children, 84 developed MIS-C, 107 Kawasaki disease, and 330 other Covid-19 complications during the first year of the pandemic. Prepandemic hospitalizations for metabolic disorders (RR 11.3, 95% CI 5.61-22.6), atopic conditions (RR 3.34, 95% CI 1.60-6.97), and cancer (RR 8.11, 95% CI 1.13-58.3) were strongly associated with the risk of MIS-C, compared with no exposure. These same exposures were also associated with Kawasaki disease and other Covid-19 complications. However, birth characteristics and history of maternal morbidity were not associated with MIS-C development. CONCLUSIONS: Children with pre-existing morbidity have a considerably elevated risk of MIS-C. IMPACT: Morbidities that predispose children to multisystem inflammatory syndrome (MIS-C) are unclear. In this study, prepandemic hospitalizations for metabolic disorders, atopic conditions, and cancer were associated with an elevated risk of MIS-C. Birth characteristics and family history of maternal morbidity were not, however, associated with MIS-C. Pediatric morbidities may play a greater role in MIS-C onset than maternal or perinatal characteristics, and may help clinicians better recognize children at risk for this complication.


Assuntos
COVID-19 , Doenças Metabólicas , Síndrome de Linfonodos Mucocutâneos , Neoplasias , Feminino , Gravidez , Humanos , Criança , Estudos Longitudinais , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Síndrome de Linfonodos Mucocutâneos/epidemiologia , Estudos de Coortes , Fatores de Risco , COVID-19/epidemiologia , Síndrome de Resposta Inflamatória Sistêmica/epidemiologia
8.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895175

RESUMO

The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.


Assuntos
Proteínas de Membrana , Membrana Nuclear , Membrana Nuclear/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Citoplasma/metabolismo , Fatores de Transcrição/metabolismo , Núcleo Celular/metabolismo
9.
J Antibiot (Tokyo) ; 76(10): 585-591, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37414938

RESUMO

The pluramycin family of antibiotics comprises angucycline compounds derived from actinomycetes that possess anticancer and antibacterial properties. Pluramycins are structurally characterized by two aminoglycosides linked by a carbon-carbon bond next to the γ-pyrone angucycline backbone. Kidamycins (3, 4) and rubiflavins (6-9) were screened through liquid chromatography-mass spectrometry analysis of the crude extracts of Streptomyces sp. W2061, which was cultured in complex media under phosphate-limiting conditions. Newly isolated rubiflavin G (7) and photoactivated compounds (8, 9) were characterized using exhaustive 1D and 2D nuclear magnetic resonance analysis. The cytotoxicity of kidamycin (3), photokidamycin (4), and photorubiflavin G (8) was determined using two human breast cancer cell lines-MCF7 and MDA-MB-231. Compared to MCF7 cells, MDA-MB-231 cells were more sensitive to the active compounds, and photokidamycin (4) considerably inhibited MCF7 and MDA-MB-231 cell growth (IC50 = 3.51 and 0.66 µM, respectively).


Assuntos
Antineoplásicos , Neoplasias da Mama , Streptomyces , Humanos , Feminino , Streptomyces/química , Neoplasias da Mama/tratamento farmacológico , Aminoglicosídeos , Antibacterianos/farmacologia , Antibacterianos/química , Carbono , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química
10.
Zootaxa ; 5315(3): 282-290, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37518601

RESUMO

Argyresthia Hübner, [1825] is a genus of small to medium sized glossy moths which comprises more than 200 species worldwide, but the Korean fauna includes only eight previously known species. In this study, we describe one new species, A. (Argyresthia) brevalbella sp. nov., and report A. (A.) angusta Moriuti, 1969 and A. (Blastotere) densa Liu, Wang et Li, 2017 for the first time from the country. The three species were found in Hallasan National Park located in the southernmost province Jeju-do at altitudes between 900-1,300 m. The new species is externally very similar to A. (A.) longalbella Liu, Wang et Li, 2017 in having a fuscous forewing with a white dorsal band, but can be distinguished by the shape of the valva, saccus and phallus of the male genitalia. We provide photographs of adults and genitalia, differential diagnoses and DNA barcodes for the three species.


Assuntos
Lepidópteros , Mariposas , Masculino , Animais , Parques Recreativos , Distribuição Animal , Genitália
11.
Chemosphere ; 339: 139617, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37495045

RESUMO

Wide-area surface decontamination is essential during the sudden release of radioisotopes to the public, such as nuclear accidents or terrorist attacks. A self-generated hydrogel comprising a reversible complex between poly(vinyl alcohol) (PVA) and phenylboronic acid-grafted poly(methyl vinyl ether-alt-mono-sodium maleate) (PBA-g-PMVE-SM) was developed as a new surface decontamination coating agent to remove radioactive cesium from surfaces. The simultaneous application of PVA and PBA-g-PMVE-SM aqueous polymer solutions containing sulfur-zeolite to contaminated surfaces resulted in the spontaneous formation of a PBA-diol ester bond-based hydrogel. The sulfur-zeolite suspended in the hydrogel selectively removed 137Cs from the contaminated surface and was easily separated from the dissociable used hydrogel. This removal was performed by simple water rinsing without costly incineration to remove the organic materials for final disposal/storage of the radioactive waste, making it suitable for practical wide-area surface decontamination. In radioactive tests, the hydrogel containing sulfur-chabazite (S-CHA) showed substantial 137Cs removal efficiencies of 96.996% for painted cement and 63.404% for cement, which are 2.33 times better than the values for the commercial surface decontamination coating agent DeconGel. Due to its excellent zeolite ion-exchange ability, our hydrogel system has great potential for removing various hazardous contaminants, including radionuclides, from the surface.


Assuntos
Hidrogéis , Zeolitas , Álcool de Polivinil , Descontaminação , Radioisótopos de Césio/análise , Césio , Água , Maleatos
12.
Food Funct ; 14(9): 4049-4064, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37073737

RESUMO

This study aimed to investigate the anti-inflammatory effects of ellagitannins from black raspberry seeds (BS) in vivo and the structural effects of ellagitannins on glucagon-like peptide-1 (GLP-1) secretion and intestinal bitter taste receptor (TAS2R) stimulation. For animal study, BS ellagitannin fraction (BSEF) was orally administered to mice with colitis induced by dextran sulfate sodium (DSS). The BSEF supplementation alleviated colonic inflammation, regulated inflammation-related cytokine levels in the mice with colitis, and increased the total GLP-1 secretion and GLP-1 receptor mRNA level in the inflamed gut. It also augmented the colonic gene expressions of mouse TAS2R (mTAS2R) 108, 119, 126, 131, 138, and 140; meanwhile, only mTAS2R108 expression was downregulated by DSS treatment. Six BS ellagitannins (sanguiin H-6, casuarictin, pedunculagin, acutissimin A, castalagin, and vescalagin) induced GLP-1 secretion in STC-1 cells and upregulated mTAS2R108, 119, 126, and 138 gene expressions. The major ellagitannins in BS (sanguiin H-6, casuarictin, pedunculagin, and acutissimin A) upregulated the gene expressions of mTAS2R131 and/or 140 known to be specifically distributed in mouse colon. Through molecular docking with mTAS2R108, the hexahydroxydiphenoyl, flavan-3-ol, glucose, and nonahydroxytriphenoyl moieties of the six BS ellagitannins were predicted to be involved in interacting with the receptor. BS ellagitannins could be promising candidates for preventing colon inflammation, likely via GLP-1 secretion induced by intestine-specific TAS2Rs.


Assuntos
Colite , Rubus , Camundongos , Animais , Taninos Hidrolisáveis/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Rubus/metabolismo , Paladar , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Inflamação , Anti-Inflamatórios/uso terapêutico , Peptídeo 2 Semelhante ao Glucagon/efeitos adversos
13.
J Ginseng Res ; 47(2): 337-346, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36926607

RESUMO

Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated ß-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased ß-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-Ⅰ to LC3-Ⅱ and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.

14.
Sensors (Basel) ; 23(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36772271

RESUMO

A complementary metal-oxide-semiconductor (CMOS) detector array is proposed to improve the sub-terahertz imaging resolution for objects in the conveyor belt system. The image resolution is limited to the implemented configuration, such as the wide spacing in the detector array, the high conveyor belt speed, and the slow response of the signal conditioning block. The proposed array can improve the image resolution in the direction perpendicular to the movement of the belt, which is determined by the size and interval of the detector pixel, by configuring the array into two replaceable columns located at the misaligned horizontal positions. Replaceable detector unit pixels are individually attached to the motherboard after measuring and evaluating the detection performance to construct the proposed array. The intensities of 32 detector pixels placed under the conveyor belt with a width of 160 mm were initially calibrated in every image, including the beam pattern of 0.2 THz signals generated from the gyrotron. The image resolution of the perpendicular direction obtained from the proposed array was measured to be approximately 5 mm at a conveyor belt speed of 16 mm/s, demonstrating a 200% improvement in resolution compared to the conventional linear array under the same conditions.

15.
Arch Pharm Res ; 46(1): 44-58, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36607545

RESUMO

E2F 1, 2, and 3a, (refer to as E2Fs) are a subfamily of E2F transcription factor family that play essential roles in cell-cycle progression, DNA replication, DNA repair, apoptosis, and differentiation. Although the transcriptional regulation of E2Fs has focused on pocket protein retinoblastoma protein complex, recent studies indicate that post-translational modification and stability regulation of E2Fs play key roles in diverse cellular processes. In this study, we found that FBXO1, a component of S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) complex, is an E2Fs binding partner. Furthermore, FBXO1 to E2Fs binding induced K48 ubiquitination and subsequent proteasomal degradation of E2Fs. Binding domain analysis indicated that the Arg (R)/Ile (I) and R/Val (V) motifs, which are located in the dimerization domain of E2Fs, of E2F 1 and 3a and E2F2, respectively, acted as degron motifs (DMs) for FBXO1. Notably, RI/AA or RV/AA mutation in the DMs reduced FBXO1-mediated ubiquitination and prolonged the half-lives of E2Fs. Importantly, the stabilities of E2Fs were affected by phosphorylation of threonine residues located near RI and RV residues of DMs. Phosphorylation prediction database analysis and specific inhibitor analysis revealed that MEK/ERK signaling molecules play key roles in FBXO1/E2Fs' interaction and modulate E2F protein turnover. Moreover, both elevated E2Fs protein levels by knockdown of FBXO1 and decreased E2Fs protein levels by sh-E2F3a delayed G1/S cell cycle transition, resulting in inhibition of cancer cell proliferation. These results demonstrated that FBXO1-E2Fs axis-mediated precise E2Fs stability regulation plays a key role in cell proliferation via G1/S cell cycle transition.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno , Neoplasias , Fatores de Transcrição E2F/metabolismo , Ciclo Celular , Proliferação de Células , Proteínas de Ciclo Celular
16.
Acta Paediatr ; 112(2): 313-320, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35298043

RESUMO

AIM: We assessed the association between caesarean birth and age-specific risks of childhood cancer. METHODS: We followed a cohort of 1 034 049 children between 2006 and 2020 in Quebec, Canada, from birth until age 14 years. The exposure was caesarean, operative vaginal, or spontaneous vaginal birth. The outcome included haematopoietic or solid tumours. We calculated hazard ratios (HR) and 95% confidence intervals (CI) for the association between mode of delivery and childhood cancer in age-lagged analyses, adjusted for potential confounders. RESULTS: A total of 249 415 (24.1%) children were born by caesarean and 97 411 (9.4%) by operative vaginal delivery. Compared with spontaneous vaginal birth, caesarean was associated with 1.16 times the risk of any cancer (95% CI 1.04-1.30), 1.12 times the risk of haematopoietic cancer (95% CI 0.92-1.36) and 1.21 times the risk of solid tumours (95% 1.06-1.39). Associations strengthened at 2 years of age and were greatest for lymphoma and sarcoma. Operative vaginal birth was not significantly associated with the risk of cancer. CONCLUSION: Caesarean birth may be associated with selected childhood cancers, including lymphoma and sarcoma early in childhood. The underlying reasons for the associations require further investigation, including whether mucosal dysbiosis or labour hormone exposure explain the excess risk.


Assuntos
Trabalho de Parto , Sarcoma , Gravidez , Feminino , Criança , Humanos , Adolescente , Cesárea/efeitos adversos , Parto Obstétrico , Parto
17.
J Cancer Prev ; 28(4): 143-196, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38205362

RESUMO

Cyclic GMP-AMP (cGAMP), synthesized by cGAMP synthase (cGAS), serves as a secondary messenger that modulates various cellular processes, including cell proliferation, cell death, immune response, and inflammation. cGAS is activated upon detecting cytoplasmic DNA, which may originate from damaged genomic and mitochondrial DNA or from viral and bacterial infections. The presence of DNA in the cytoplasm can trigger a substantial inflammatory reaction and cytokine production via the cGAS-STING signaling pathway. Consequently, specific inhibitors targeting this pathway hold significant potential as chemopreventive agents. In this review, we explore the potential effectiveness of modulating cGAS activity. We discuss the role of cGAMP, the mechanism of action for distinguishing between self and foreign DNA, and the possible functions of cGAS within the nucleus.

18.
Front Immunol ; 13: 1011190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389741

RESUMO

CD3-epsilon(CD3e) immunotoxins (IT), a promising precision reagent for various clinical conditions requiring effective depletion of T cells, often shows limited treatment efficacy for largely unknown reasons. Tissue-resident T cells that persist in peripheral tissues have been shown to play pivotal roles in local and systemic immunity, as well as transplant rejection, autoimmunity and cancers. The impact of CD3e-IT treatment on these local cells, however, remains poorly understood. Here, using a new murine testing model, we demonstrate a substantial enrichment of tissue-resident Foxp3+ Tregs following CD3e-IT treatment. Differential surface expression of CD3e among T-cell subsets appears to be a main driver of Treg enrichment in CD3e-IT treatment. The surviving Tregs in CD3e-IT-treated mice were mostly the CD3edimCD62Llo effector phenotype, but the levels of this phenotype markedly varied among different lymphoid and nonlymphoid organs. We also found notable variations in surface CD3e levels among tissue-resident T cells of different organs, and these variations drive CD3e-IT to uniquely reshape T-cell compositions in local organs. The functions of organs and anatomic locations (lymph nodes) also affected the efficacy of CD3e-IT. The multi-organ pharmacodynamics of CD3e-IT and potential treatment resistance mechanisms identified in this study may generate new opportunities to further improve this promising treatment.


Assuntos
Imunotoxinas , Camundongos , Animais , Linfócitos T Reguladores , Contagem de Linfócitos , Subpopulações de Linfócitos T , Autoimunidade
19.
Food Chem ; 396: 133712, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863176

RESUMO

This study aimed to identify ellagitannins in black raspberry seeds (BRS) and to optimize accelerated solvent extraction of ellagitannins using an artificial neural network (ANN) coupled with genetic algorithm. Fifteen monomeric and dimeric ellagitannins were identified in BRS. For ANN modeling, extraction time, extraction temperature, and solvent concentration were set as input variables, and total ellagitannin content was set as output variable. The trained ANN had a mean squared error value of 0.0102 and a regression correlation coefficient of 0.9988. The predicted optimal extraction conditions for maximum total ellagitannin content were 63.7% acetone, 4.21 min, and 43.9 °C. The actual total ellagitannin content under the optimal extraction conditions was 13.4 ± 0.0 mg/g dry weight, and the prediction error was 0.75 ± 0.27%. This study is the first attempt to analyze the composition of ellagitannins in BRS and to determine optimal extraction conditions for maximum total ellagitannin content from BRS.


Assuntos
Nigella sativa , Rubus , Taninos Hidrolisáveis , Redes Neurais de Computação , Sementes , Solventes
20.
Zootaxa ; 5087(1): 75-111, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390924

RESUMO

Tenupalpa Lee et Li, 2021 (Gelechiidae: Thiotrichinae) was recently proposed based on a molecular and morphological study of the subfamily. It currently includes six species mainly known from Russia, Japan and India. In this paper, 15 new species from China are described: T. acutata sp. nov., T. acutimedia sp. nov., T. angulosa sp. nov., T. breviaedeaga sp. nov., T. zhengi sp. nov., T. crassimedia sp. nov., T. dissimilis sp. nov., T. falcata sp. nov., T. fuscalata sp. nov., T. immaculata sp. nov., T. isabellina sp. nov., T. magniguttata sp. nov., T. latifasciata sp. nov., T. perparviloba sp. nov. and T. uncativalva sp. nov. Also, T. xanthodora (Meyrick, 1923) comb. nov., and the original combination for Thiotricha glenias Meyrick, 1908 stat. rev. are proposed. Five speciesTenupalpa angustella (Omelko, 1984), T. biformis (Omelko, 1984), T. flavitermina (Kyaw, Yagi Hirowatari, 2019), T. nephodesma (Meyrick, 1918) and T. venustalis (Omelko, 1984)are reported from China for the first time, and two speciesT. angustella and T. venustalisare newly recorded from Korea. Photographs of adults, genitalia, and the eighth abdominal segment of males are illustrated, and a key to all known Tenupalpa species are provided based on external characters and male genitalia.


Assuntos
Lepidópteros , Mariposas , Distribuição Animal , Animais , China , Genitália , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA